Localized solutions in parametrically driven pattern formation.

نویسندگان

  • Tae-Chang Jo
  • Dieter Armbruster
چکیده

The Mathieu partial differential equation (PDE) is analyzed as a prototypical model for pattern formation due to parametric resonance. After averaging and scaling, it is shown to be a perturbed nonlinear Schrödinger equation (NLS). Adiabatic perturbation theory for solitons is applied to determine which solitons of the NLS survive the perturbation due to damping and parametric forcing. Numerical simulations compare the perturbation results to the dynamics of the Mathieu PDE. Stable and weakly unstable soliton solutions are identified. They are shown to be closely related to oscillons found in parametrically driven sand experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional localized chaotic patterns in parametrically driven systems.

We study two-dimensional localized patterns in weakly dissipative systems that are driven parametrically. As a generic model for many different physical situations we use a generalized nonlinear Schrödinger equation that contains parametric forcing, damping, and spatial coupling. The latter allows for the existence of localized pattern states, where a finite-amplitude uniform state coexists wit...

متن کامل

Traveling pulse on a periodic background in parametrically driven systems.

Macroscopic systems with dissipation and time-modulated injection of energy, parametrically driven systems, can self-organize into localized states and/or patterns. We investigate a pulse that travels over a one-dimensional pattern in parametrically driven systems. Based on a minimal prototype model, we show that the pulses emerge through a subcritical Andronov-Hopf bifurcation of the underlyin...

متن کامل

Parametric Excitation of Breathers in aNonlinear

We investigate localized periodic solutions (breathers) in a lattice of parametrically driven, nonlinear dissipative oscillators. These breathers are demonstrated to be exponentially localized, with two characteristic localization lengths. The crossover between the two lengths is shown to be related to the transition in the phase of the lattice oscillations.

متن کامل

Soliton pair interaction law in parametrically driven Newtonian fluid.

An experimental and theoretical study of the motion and interaction of the localized excitations in a vertically driven small rectangular water container is reported. Close to the Faraday instability, the parametrically driven damped nonlinear Schrödinger equation models this system. This model allows one to characterize the pair interaction law between localized excitations. Experimentally we ...

متن کامل

Dynamics of counterpropagating waves in parametrically driven systems: dispersion vs. advection

The dynamics of parametrically driven counterpropagating waves in a one-dimensional extended nearly conservative annular system are described by two coupled, damped, parametrically driven nonlinear Schrödinger (NLS) equations with opposite transport terms due to the group velocity, and small dispersion. The system is characterized by two length scales defined by a balance between (a) forcing an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 68 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003